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CONVERSION TABLE

Conversion factors for U.S. customary to metric (SI) units of measurement.

To Convert From To ulC ply By

angstrom mter 1.000 000 X E -

atmosphere (normal) kilo pascal (kPa) 1.013 S X E .2

bar kilo pascal (kPa) 1.000 000 X E -2

barn meter
2 

(m) .000 000 x E -28
(rtish thermochemLcaLl joule (J) 1.054 330 1 E -3

CA al (thermochemcal)/cm I mega JOulejm, ,/m) 4. 134 000 X E -2

calorie (thermochemicaL)i joule (M) 4 184 000

calorie (thermachemical)/g§ Joule per kilogram (J/kg)" 4.184 000 X E -3

curiei giga becquerel (CBq)l 3.700 000 X E -1

degree Celsiust degree kelvin (K) t t *C 273.1S

degree (angle, radian (rad) 1.745 329 X E -2

degree Fahrenheit degree kelvin (K) t" - (t F  459.67M/1.8

electron void joulm (J) 1.602 19 X E -19

ergi joule (J) 1.000 000 X E -E

erg/second watt (W) 1.000 000 X E -7

. oot meter (a) 3.048 000 X E -1

f- foot-pound-forze joule (J) 1.3SS 818

gallon (U.S. liquid) meter (m 
3  

3.785 412 X E -3

inch meter (m) 2.540 000 X E -2

jerk joule (J) 1.000 000 X E -9

joule/kilogram (J/kg) (radiation

dose absorbed)i gray (GY)" 1.000 000

kilotonsi terajoules 4.183

kip (1000 lbf) newton (N) 4.448 22Z 1 X .3

kip/inch" (ksi) kilo pascal (kPa) 6.894 757 X E *3

ktap newton-second/n2 (4- s/m)2 1.000 000 X E -2

micron meter (m) 1.000 000 X E -6

Mil meter (m) 2.540 000 X E -s
% mile (international) meter (m) 1.609 344 X E -3

ounce kilogram (kg) 2.834 952 X E -2

pound-force (Ibf avoirdupois) newton (N) 4.448 222

% pound-force inch newton-meter (N.ml 1.129 848 X E -1
% pouno-force/inch newton/meter (N/m) 1.751 :68 X E -

pound-force
/
foot- kilo pascal (kPal 4 788 026 X E -2

pound-force/inch (psi) kilo pascal (kPa) 6.894 757

pound-mass (Ibm avoirdupois) kilogram (kg) 4.535 9:4 X E -l

pound-nass-foot
2 

(moment of inertia) kilogram-meter (kg.m ) 4.214 oil x E -.

"pound-massfoot
3  

kilogram-meter
3 

(kg/m
3  

1.601 846 X E 

rid 'radiation dose absorbed)l gray (Cy) 1 .000 000 x E -2

roentgeni coulomb/kilogram tC,kg) 2.579 760 K E -4

shake second (s) 1.000 000 X E -8

slug kilogram (kg) 1.4S9 390 X E *1

torr fmm Hg. 0" C) kilo pascal fkPa) 1.333 2 X E -1

The ;ray Cy) is the accepted SI unit rauivalent to the onergy imparted by ioni:inq radiat~on t3 a mass of
ererg, corresponding to one joule/kilogram.

-Te 'ec.uerel S8c) is the SI unit of radioactivity: I 8q - I event/s.
.- inneriture m e reoorted in degree Celsius as well as Jeqree kelvin.
ST'cse units should not be converted in DNA technical reports; ho-ever, a parenthetical conversion is
permitted at the author's discretion.
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SECTION 1

INTRODUCTION

1.1 OBJECTIVES OF WORK.

This report documents the results of an investigation with the

long term objective of developing a general approach for analyzing

rockbursting in underground excavations. Specifically, the

objective of this project was to assess the applicability of

finite element techniques to the problem of rockbursting.

* Rockbursting was to be analyzed as a surface instability by

applying numerical stability techniques similar to those used to

address the buckling problems of Structural Dynamics. A major

objective of this investigation was to assess the applicability of

finite element methods in describing surface instability, which

has been done for structures such as shells and truss frames but

not for the bulkier material mass encountered in underground

excavations. To achieve this objective, four tasks were defined as

follows:

Task 1 - Develop computer program modules which can be used in

finite element codes to analyze the problem of

rockbursting as a surface instability of underground

*! excavations.

Task 2 - Validate the application of the numerical approach to

rockbursting by performing a stability analysis of a

simple boundary value problem - the wedge test.

O Task 3 - Investigate the influence of the material modelling on

the critical loads during the wedge test.

Task 4 - Examine how much surface instability is influenced by

the friction at the boundaries on the wedge test.

-N-N
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It is to be noted here that the first task forms the major

portion of the overall project. The work under this task consisted

of developing computer program modules that can be used in general

* purpose nonlinear finite element programs to analyze the surface

instabilicy of underground excavations. The objective of the

second, third and fourth tasks was to assess the applicability of

our numerical approach in the case of a simple boundary value

problem. The numerical analysis had to be calibrated for a simple
boundary value problem before extending it to the complex
geometries and material properties encountered in the case of real

compression of rock sample. It will be referred to as the wedge

test. During the second task, the program modules developed in the

first task are used to obtain numerical results in the particular

case of the wedge test. The performance of these finite element

modules are tested by comparing their results with analytical

results or other simpler numerical solutions. These additional

results were obtained by using the program BIF, which was

especially written to carry out the parametric study under the

third task. The parametric study consisted of investigating the

influence of the parameters of various constitutive equations on

the buckling load of the wedge test. The fourth and last task was

A to investigate how much surface instability was influenced by the

introduction of friction forces at the boundaries of the wedge

* test.

The numerical method which has been developed in this report5: has only been applied to analyze surface instability of the wedge
test but not of real excavations. The extension of the method to
real excavations, which are more complex boundary value problems,

is the long term objective of the project. This extension will be

V the object of future research.

2
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1.2 REPORT ORGANIZATION.

The main body of this report is comprised of 5 major sections

covering respectively

1. the definition and past work on rockbursting and surface

instability,

2. the finite element techniques used to describe the phenomenon

of surface instability,

3. the numerical results obtained in the particular case of the

wedge test,

4. the influence of material modeling on surface instability, and

5. the influence of friction boundary conditions on surface
instability.

Mathematical derivations have been documented in appendices.

1.3 DEFINITION OF ROCKBURSTING.

The term rockburst is used to designate a violent failure of

' rock which is sometime experienced in deep underground

excavations. It involves a rapid convergence and oscillation of

the excavation walls, followed by slabbing and failure of the rock

immediately adjacent to the excavation (Ortlepp, 1978). This

violent release of energy has been observed on a scale ranging

from the expulsion of small fragment of rock to major collapse of

the excavation. It is often observed to follow enlargement of the

cavity by blasting. Rockburst appears to be more frequent in rock

which are hard and brittle.

The nature and the circumstances accompanying this phenomenon

suggest that underground excavations in hard rock subject to

dynamic loading caused by nuclear explosion are prone to

rockbursting. In mining operations the mitigation of rock burst

relies on designing the layout of the mine excavation and the

3
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sequence of extraction in order to reduce as much as possible the

vertical stress concentration around the mine (method of energy

release rate, Jaeger and Cook, 1977, Salamon, 1974). Although the

method provides a practical design tool for reducing the hazards

of rockburst, it does not provide a mean of calculating whether

rockburst will occur or not.

1.4 PAST WORK ON ROCKBURSTING.

Several phenomenological models have been proposed for
explaining rockbursting phenomena. They are based upon limiting

I,.-

static equilibrium, nonlinear elasticity, strain-softening

• material, unstable propagation of pre-existing cracks, and finally

- surface instability. Lippman, 1978, Avershin et al., 1972, examine

the static equilibrium of rock block adjacent to the excavation.

The rockburst occurs in circumstances where the resisting forces

do not balance the lateral forces tending to propel the block

inside the cavity. Freudenthal, 1977, use nonlinear elasticity
(hyperelasticity) to account for shear induced volume expansion.

He considered that rockburst and spalling of the opening walls are

caused by crack propagation associated with the tensile stress

around the excavation. Salamon, 1974, and Pietruszczak and Mroz,
'...

1980, Pariseau, 1979, characterize the rock as a strain-softening
material. Instability becomes possible once the rock has

experienced its peak strength. This mechanism can however be

refuted on the ground that the softening observed in compression

of brittle rock specimen is test dependent and is always

associated with localized failure mechanisms (Drescher and

Vardoulakis, 1982). Nemat-Nasser and Horii, 1982, analyze rock

bursting as buckling of slabs. The slabs become detached from the

rock by tensile extension, parallel to the free surface of

pre-existing cracks, which are caused by far-field compressive

['
4
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stress. Finally, Vardoulakis, 1984, uses the theory of bifurcation

to analyze rockburst as surface instability.

1.5 PAST WORK ON SURFACE INSTABILITY.

The pioneering work on surface instability was carried out by

Biot, 1965, who examined the half-plane problem with

incompressible isotropic and anisotropic elastic material. A

simple example of the surface instability treated by Biot in 1965

is summarized in Appendix A. In this example, Biot showed how the

elastic half-space looses its rigidity for some value of

compressive stress r"I and that this loss of rigidity corresponds

* Oto the phenomenon of surface buckling or surface instability. The

buckling modes of the half-space are surface waves, the amplitude

of which decays rapidly with depth. Hutchinson and Tvergaard,

1980, extended Biot's results for elastoplastic materials. They

noted that the existence of surface buckling strongly depends on

the type of plasticity which is employed to describe material

-.. behavior. The instability was found to occur at low loads for

solids characterized by a deformation theory of plasticity and at

high and unrealistic loads for solids characterized by the flow

theory of plasticity. Vardoulakis, 1984, basing his analysis on a
deformation of plasticity showed that the bifurcation load marks

, the beginning of dynamic instable conditions and that the

* existence of surface buckling is related to the ratio of the

tensile over the compressive strength. This ratio can be used as a

measure of the brittleness of the rock; the smaller the ratio, the

more brittle the rock is. Horii and Nemat-Nasser, 1982, departing

0. from the assumption of incompressibility made in the previous

* investigations, introduced dilatancy and showed that the inclusion

of this material property reduces the magnitude of the bifurcation

load. Horii and Nemat-Nasser also noted that the occurrence of
".4
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surface instability could be sensitive to the existence of a

2! non-coaxiality parameter in the constitutive equation.
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SECTION 2

NUMERICAL METHOD IOR ASSESSING SURFACE INSTABILITY

The following section summarizes the numerical methods which

have been used in the numerical assessment of rockbursting. This

section only outlines major results. Mathematical derivations are

documented either in appendices or in the publications referenced

in the text. The methods presented in this section have been

implemented in the nonlinear finite element code, LINOS. The

computer code LINOS was developed at the University of Southern

California three years ago. Its main objective is to serve as a

vehicle for applying nonlinear constitutive equations of soils and

rocks especially in the range of large deformation and in presence

of bifurcations. LINOS was therefore especially suited for the

analysis of surface instability. According to the modular

structure of LINOS, which is common to most of the large finite

element codes, the library of element and material subroutines can

be easily expanded without alteration of the main code. In the

context of this project, a new element module and two new material

modules were added to the element and material library. In

addition to these three new modules, two other modules have been

coded to perform the calculation of the eigenvalues and

eigenvectors of the stiffness matrix. All these modules can

certainly be modified to fit into other finite element codes such

as ADINA (Bathe, 1982).

This section is divided into six subsections:

1. updated Lagrangian variational formulation

2. calculation of tangential stiffness matrix

3. detection of bifurcation point

7
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4. calculation of eigenvalues and eigenvectors of tangential

stiffness matrix
5. constitutive models

6. finite element implementation of constitutive models

2.1 UPDATED LAGRANGIAN VARIATIONAL FORMULATION.

Biot, 1965, Horii and Nemat-Nasser, 1982, and Vardoulakis,

1984, based their analysis of surface instability upon the partial

differential equations of equilibrium for incremental stresses.
They did not use the variational principles which are the

* efundamental basis of finite element methods. One of the first and

most important point of the numerical assessment of surface

" - instability was to verify the compatibility of the nonlinear

variational principle of our finite element code, LINOS, with the

nonlinear partial differential equations used by previous

investigators. This compatibility, which is rather straightforward

to derive in the case of small deformation, becomes less obvious

in the case of large deformation due to the multiple chcices of

accounting for material and geometrical nonlinearities. In fact

the variational principle used in LINOS is identical to the

variational principle derived by Biot (1965, pp 73-79), and by

McMeeking and Rice, 1978. This formulation, which requires the

* update of the body configuration as it deforms, is referred to as

updated Lagrangian. The position of the finite element mesh

changes after each time step in order to perform the volume and

surface integrations on the deformed, not initial, body

configuration. The updated Lagrangian method is detailed by Bathe,

1982, (pp 335-406).

8
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2.2 CALCULATION OF TANGENTIAL STIFFNESS MATRIX.

The finite element analysis of bifurcation problems requires

more accurate and numerous calculation of the tangential stiffness

matrix than most conventional nonlinear finite element analysis.

In nonlinear computations, accurate results can be obtained with

an approximate stiffness matrix if an iterative technique balances

the internal and external forces. For example, in the case of the

modified Newton-Raphson method, the tangential stiffness matrix

can be reformed only once, at the first time step, or a few times,

at some later time steps. For modified Newton-Raphson, iterations

are carried out until the out-of-balance or residual forces become

negligible. Out-of-balance or residual force are equal to the

difference between internal and external forces. Modified

Newton-Raphson methods are sometimes preferred to full

Newton-Raphson technique since they are less time-consuming, i.e.,

the stiffness matrix does not have to be reformed as many times as

for full Newton-Raphson.

However, in the case of bifurcation analysis, the stiffness

matrix must be calculated frequently and accurately. The objective

of a finite element analysis of bifurcation problems is to detect

the loss of uniqueness of the incremental solution Ad for the

following general type of nonlinear matrix problem of n dimension

K(d).Ad AF (2)

where

Ad = increment of nodal displacement at time t

d = nodal displacement at time t

(cumulated value of Ad between times 0 and t)

F= residual or out-of-balance force

(difference between internal and externally applied loads)

9
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K~d)= tangential stiffness matrix

(dependent on the nodal displacement d at time t)

n = number of degrees of freedom

The bifurcation of the increment Ad from one to another type

of solution is only possible when the problem (2) admits more than

one solution. This loss of uniqueness can only take place when the

matrix K(d) becomes singular, which is associated with a zero

determinant. Therefore, the detection of possible points of

bifurcation requires an accurate evaluation of the stiffness

matrix, especially in the vicinity of the bifurcation. In order to

compute the stiffness matrix accurately, a new element has been

*developed. This element is a two-dimensional plane-strain

isoparametric four-node element with four stress point which can

handle large deformation. The four stress points are located at

the gaussian points of the element. One stress point can also be
selected at the element centroid. The integration rules which are

chosen with two by two or one Gaussian points. In the present

* work, only four stress points and four integration points were

used. The influence of reduced integration and stress points on

the surface instability has not been investigated and could be the

object of future research.

* 2.3 DETECTION OF BIFURCATION POINT.

The bifurcation point, which corresponds to the loss of

uniqueness of the incremental matrix problem (2), is possible when

the determinant of the increment tangential matrix becomes equal

to zero. In the present numerical approach, the bifurcation point

can be detected by choosing one out of three techniques. It can be

found by checking the sign change of either the pivots, the

determinant, or the eigenvalues of the stiffness matrix. The first



method of detection is rather simple and efficient. It takes place

right after the factorization of the stiffness matrix into upper,

lower triangular and diagonal matrices:

K(d) = L.D.U (3)

. L = lower triangular matrix

* D = diagonal matrix

U = upper triangular matrix

By definition, the pivots of K are the diagonal entries of D,

noted Dii, i=l,n. In the case of symmetric matrix,

L = Ut (4)(4)

twhere U represents the transpose of U.

The second method computes the determinant of the stiffness matrix

K by calculating the products of the pivots. Since for triangular

matrices L and U

det(L) = det(U) =1 (5)

then the determinant of K is the products of the pivots:

det(K) = det(D) = D11.D22 .D3 3 . . .. . D (6)

The third and last method is more time consuming than the first
two methods; it requires the calculation of the eigenvalues of the

stiffness matrix. This calculation is carried out just after the
formation of the tangential stiffness matrix but before its

factorization. If the selected bifurcation condition is met at

time tnl1 then bifurcation takes place between times tn and tn+1 %n n+

11 -



If the bifurcation time is needed with more accuracy, the

step-by-step analysis can be restarted from time tn by using a

smaller time interval, and stopped when the bifurcation condition

is met again. Theoretically, this process could be repeated

several times until the time interval [tn 'tn+l] becomes small

enough. Alternate techniques of detection use Regula-Falsi method

-*[ or the method proposed by M. Fujikake (1985). Iterative techniques

to refine the bifurcation time was not required in the present

analysis since very small loading steps were used.

2.4 CALCULATION OF EIGENVALUES AND EIGENVECTORS OF THE TANGENTIAL

STIFFNESS MATRIX.

Two program modules have been coded to compute the

eigenvalues and eigenvectors of the tangential stiffness matrix.

One modules calculates only the eigenvalues during the

step-by-step integration in order to detect the bifurcation point.

The second module calculates both the eigenvalues and the

- .. eigenvectors of the stiffness matrix after the detection of the

bifurcation point. With the help of the interactive capability of

the second module, the user can select and plot the eigenvectors

as it is important to understand the significance of the

eigenvectors corresponding to the lowest eigenvalues. Both modules

_. use subroutines from the EISPACK package (Smith, 1976).

2.5 CONSTITUTIVE MODELS.

In the context of this analysis, the following general class

* of rate-type constitutive equations are considered:

r".". •=C D (7)

r-. r Cijkl Dkl

12
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4where r is the Jauman rate of Kirchhoff stress, D the rate of

deformation, and Cijkl may be any function of states of stress

and strain which characterizes the incremental material response.

In the following section, three types of constitutive equations

(7) will be specified: isotropic and anisotropic hypo-elastic

materials, and isotropic elasto-plastic materials of the flow

theory of plasticity. The selected constitutive models have two,

three, or five material constants, respectively, which quantify

the response of a particular material.

2.5.1 Isotropic hypo-elastic solids: (two material constants).

0 Ai

r.*= (G(6 6 +6 6 )+ A.6 .5.j 1 2, 8i ik jl il jk ij2,3 (8)
sum on k,1=1,2,3

where 6ij is Kroneker symbol:

6ij = 1 if i=j, and 6 = 0 if i,-j i,j=I,2,3 (9)

and G and A are shear and Lame's moduli, respectively.

, 2.5.2 Anisotropic hypo-elastic solids (three material constants).

0 As a particular case of anisotropy, transverse anisotropy in

plane strain can be accounted for by introducing a transverse

shear radulus Gt. In the case of incompressible material with the

-lane of isotropy normal to the x2 direction, the plane strain

* .constitutive equation is:

2GD'.. i=j=l,2 (10a)

13
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r'ij = 2G tD'ij (10b)

Dkk =0 incompressibility (10c)

, .. ij/3 deviatoric stress rate (10d)

D'.13 D.. - 6ij Dkk/3 deviatoric strain rate (10d)

A new material model is introduced by modifying relation (10) in

order to have compressibility:

ij = 2GDij Dkk i=j=l,2 (11a)

i-ij = ij (llb)

This material model, which is not transversely isotropic in a
-:[ rigorous sense, is referred to as anisotropic hypo-elastic. If

the shear moduli are equal

G = Gt (llc)

then the equation (11) is the one of the fully isotropic case.

- 2.5.3 Elastoplastic solid (five material constants).

Adopting the notation of Rudnicki and Rice (1975), the

following elastoplastic constitutive relations of the flow theory

of plasticity are considered:

0,

.. 1 4
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i= ( G(6ik6 jl+6il6 jk ) + (B-2G/3) .6 (12a)

1 S. s k l

H + G + B r 1)

i,j=l,2,3 sum on k,1=1,2,3

where

G = shear modulus

B = bulk modulus

H = plastic modulus

= friction coefficient

6 dilatancy parameter

1
s.' = a.. 3 ak6ij deviator stress (12b)

.-5sijsij) invariant of deviator stress (12c)

(12d)
2

a = akk/3 mean pressure (12d)

As shown in the stress space (a,r) of Fig.l, the friction

coefficient and dilatancy parameter f are the slope of yield

surface and normal of plastic potential surface, respectively.

The relation (12.a) is isotropic and depends only on two stress

invariants, a and r. They are independent of the third stress

invariant, which is sometime referred to as Lode's angle.

15
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. .' :.MEAN STRESS,

-'2-'.Figure 1. Geometrical interpretation of the coefficient

." of friction p and the dilatancy factor a

II (after Rudnicki and Rice, 1978).

...... The deformation theory of plasticity has not been considered

=.]Iin this analysis, although it was found to yield more realistic

" '[ prediction of buckling load than the flow theory of plasticity

-' .(Hutchinson and Tvergaard, 1980, Vardoulakis, 1984 ). The

,. superiority of the deformation theory over the flow theory in the

• particular case of buckling analysis results from the dependence

.jL.-

- ;..,of the incremental response upon the stress rate direction.

; However, in some models of the deformation theory, the
constitutive matrix is a discontinuous function of the stress

.oincrement direction. Such a discontinuity may cause numerical

" problems in the context of finite element analyses. Therefore,
Tthe deformation theory was not considered for this reason.

-'.'-" A particular case of the general elastoplastic relation has

_-.'6
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been specified by Horii and Nemat-Nasser (1982). Their model

describes the particular experimental data obtained on

sandstones. The plastic modulus H is a function of the first

stress invariant a and the effective strain 7. The coefficient j

is a constant, while the dilatancy angle 0 depend on the stress

states (see Horii and Nemat-Nasser, 1982, for further detail)

.2.6 FINITE ELEMENT IMPLEMENTATION OF CONSTITUTIVE MODEL.

S..-.. From the point of view of nonlinear finite element methods

the constitutive models are required in two operations:

(1) formation of the stiffness matrix and (2) calculation of the

* residual forces. Consequently the material modules must perform

two main tasks: (1) calculation of the constitutive equation

C and (2) stress calculation. The first task is done by

evaluating the coefficients Cijkl as specified by the relations

(8), (9) and (10). The second task is less straightforward than

- the first task. The strain increment Ac and rigid rotation R

which result from incremental nodal displacement are not

infinitesimal but finite. Appropriate numerical techniques are

therefore required to integrate the rate equations (8), (9) and

(10) between time tn and tn+l* This integration is performed by a

module which is referred to as a stress calculation subroutine.
Stress calculation subroutines play an important role in the

* convergence of the iterative scheme which balances out internal

and external forces. If the stress are not calculated with

sufficient accuracy, convergence may be hard to achieve. This

absence of convergence is especially to be expected in the

vicinity of bifurcation point, where the stiffness matrix is

about to become singular. Error in the stress calculation

subroutine may generate artificial out-of-balance force which

prevents the system from reaching a bifurcation point.

17
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In the case of finite deformation the stress increment

calculation are carried out by using Hughes and Winget (1981)

method. The objective stress rate of relation (7) involves the

spin W in order to account for the rigid body rotations of a

material point relative to the spatial coordinates. In

incremental form, instead of rate form, the spin W becomes an

orthogonal rotation through an incremental angle. Hughes and

*i Winget (1981) have given a modern account of this process and

have provided a direct way to evaluate the orthogonal rotation

matrix R from the spin W. Thus

-1R (6 - AtW/2) - . (6 + AtW/2) (13a)

where 8 is Kroneker's symbol, and At the time interval. In

two-dimension R can be written as:

coso - sino

R =(13b)
sino cos8

Half angle trigonometric formulas are used to get R the square

root of R. With these constructions the rate-type constitutive

models (7) can be integrated over the increment from tn to tn+l

in the following way. First the stresses an, which represent the

stress at all the stress points at time tn, are advanced to the

timet = (t+t )/2 by*n+1/2 n n+1

P. . (Rn+1/2 = n (14)

Using the intermediate configuration between time tn and tn+1I

and the time step At, the strain increments Atn+1/2 are

calculated at all the stress points from the nodal displacement

between times tn and tn+l . Then the constitutive equation is

integrated and new stresses an+l/2 are obtained. These are then

.p. 18



tn+1/2 tn+ 1 by the same process as in equation

(14). The integration of the constitutive equation is carried out

by using a subincremental technique dividing the prescribed

strain increment Aen+1/2  into several subincrements. Each

subincrement is integrated with an improved Euler method without

iteration. In our computations, the subincrementation was not

fully exploited; only one increment was used.

V.1
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SECTION 3

NUMERICAL RESULTS ON SURFACE INSTABILITY OF THE WEDGE TEST

The following section summarizes the numerical results which

are obtained on the surface instability of a particular boundary

value problem - the plane-strain compression of a cube, which is

referred to as the wedge test. The calculations were carried out

by using computer modules which are based on the methods and

principles presented in the previous sections. The objectives of

the present section are (1) to verify that our computer modules

* are correctly implemented and, (2) to check that the selected

finite element method is appropriate to describe surface

instability in the particular case of the wedge test. The

performance of the computer modules, especially the new element

and material model subroutines, are tested by comparing finite

element results with analytical or numerical results derived for

hypo-elastic and elastoplastic material models.

This section is divided into six subsections:

1. Geometry and boundary conditions of the wedge test

2. Finite element mesh

3. Analytical solutions for stress-strain response and

bifurcation load

4. Integration algorithm

5. Change of eigenvalues versus applied displacement

6. Eigenvalues and eigenvectors at the bifurcation point

O 3.1 GEOMETRY AND BOUNDARY CONDITIONS OF THE WEDGE TEST.

The geometry and boundary conditions of the wedge test are

shown in Fig.2. The cubical body has a one to one aspect ratio.
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The initial length of its sides is equal to unit length. The left,

right, and lower boundaries are frictionless. The upper boundary

is free of traction. The block is subjected to plane strain

deformation by preventing displacement in the x 3 direction. The

horizontal displacement of the nodes located on the left boundary

* are prescribed while their vertical displacement is free. The

* .horizontal displacement u1 on the left boundary is specified by

applying a selected displacement increment Au1 , the size of which

is 0.0025. Therefore 200 increments are required to reach the

horizontal displacement of 0.5. In this deformation range - 50% -

the strain is finite, which results in nonlinear relationships

between strain and displacement gradient. Such a geometrical

*nonlinearity constitutes a meaningful test for the updated

Lagrangian technique. The vertical nodal displacements on the left

boundary will be fixed in a later section to investigate the

effect of nonuniform stress field on surface instability. The

geometry and boundary conditions of Fig.2 correspond to the

compression of a material block between five lubricated rigid

plates with only one free surface. For such an idealized test

condition, the trivial solution is a uniform state of stress and

strain within the sample even for large deformation.

3.2 FINITE ELEMENT MESH.

* Four different meshes, with one, four, nine and twenty five

elements respectively, are used. Fig.2 shows only the 25 elements

model. All the elements for a given mesh have the same initial

size. They are four nodes isoparametric elements with four stress

* . points per element located at the Gaussian points of the element.

The number of degrees of freedom of the problem varies with the

number of elements as indicated in Table 1. As shown in Table 1,

the number of nodal degrees of freedom increases rapidl with the

'i22
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number of elements, which causes a rapid increase of the

" - computation time to extract the eigenvalues and eigenvectors,

*,. especially in the case of matrices which are neither symmetric nor

positive definite. Mainly for this reason, the number of elements

n was limited to 25. Higher order elements or nonuniform mesh are

not used in this project. A more detailed analysis of the effect

of the mesh refinement on surface instability need to be carried

out in the future. Surface instability, which Biot associates to

the emergence of surface waves the amplitude of which decays

exponentially with depth, could certainly be described more

.. accurately by refining the mesh in the vicinity of the free

surface.

Table 1. Degree of freedom versus number of elements in the wedge
test

number of elements number of degrees of freedom
(on 1 side) (total) (size of stiffness matrix)

1 1 2
2 4 9
3 9 20
4 16 35
5 22 54 2
n n 2n + n-

3.3 ANALYTICAL SOLUTION FOR STRESS-STRAIN RESPONSE AND BIFURCATION

LOAD.

The idealized hypo-elastic model with constant moduli was

considered in order to obtain simple analytical solutions. This

material may not represent the behavior of any real material but

it leads to simple analytical solutions, even for large

displacement, when compared to other realistic models. The

analytical derivation is detailed in tne Appendix B. The material

23
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parameters of hypo-elastic models are listed in Table 2. The

buckling stress of the free surface of the half-space made of such

an idealized material can also be calculated analytically or

numerically. The values of stress and displacement at the onset of

surface instability are shown in Table 3 and Fig.3. The

stress-displacement response of Fig.3 calculated by the finite

element analysis of hypo-elastic material agree perfectly with the

. analytical results described in the appendix B, which demonstrates

that the element and material model were correctly implemented.

Table 2. Material constants of hypo-elastic and elastoplastic

*O models

model material constant

isotropic hypo-elastic shear modulus G 1.
Poisson ratio v 0.3

anisotropic hypo-elastic shear modulus G 1.
transverse modulus G 0.1

tPoisson ratio v 0.3

- elastoplastic Young's modulus E 200.

Poisson ratio v 0.3
Friction coefficient , 0.39
variable dilatancy

P= 13 + r/a

variable plastic modulus H

H = exp(l.8-0.36a+e 06-2 2

t.7 = (2 D' ..D' 0." d1] ij )  d

0
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Table 3. Analytical values of displacement u1 and normalized

stress a1l/G at the buckling of the half space for

hypo-elastic and elastoplastic models.

material model u1  a/G

isotropic -0.3593 -1.4484
anisotropic -0.07336 -0.2225
elastoplastic -0.058 -0.0334

It is important to notice that, for the particular case of the

anisotropic hypo-elastic material subjected to the wedge test, the

transverse shear modulus Gt affects only the buckling stress but

not the stress-strain response. Isotropic and anisotropic

hypo-elastic material give the same stress-strain response but

different buckling stress. Therefore a good fit of the

stress-strain response of the wedge test does not necessarily mean

a correct prediction of the buckling load since surface buckling

depends on an aspect of the material behavior which is not

apparent in the stress-strain response.

In the case of the elastoplastic model of Horii and

Nemat-Nasser, 1982, the stress-displacement of Fig.4 has been

obtained by integrating step-by-step the plane strain constitutive

equation for the material constants specified in Table 2 (see

Horii and Nemat-Nasser, 1982, for detail). Surface instability was

detected by using a technique similar to the one employed in the

computer code BIF. The values of displacement and normalized

stress are shown in Table 3.

It is worth noting that, for both hypo-elastic and

elastoplastic models, the stress-strain response was derived for
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the block of finite size shown in Fig.2, and that the buckling

stress was obtained for the infinite half-space.

3.4 INTEGRATION ALGORITHM.

Two integration schemes were alternately used to integrate

V. step-by-step the nonlinear finite element problem of the wedge

test: full and modified Newton-Raphson methods. During the

modified Newton-Raphson computations, the stiffness matrix was

reformed only once each time step, which was less time consuming

than full Newton-Raphson, but accurate enough due to the small

*size of the loading increment. At a prescribed boundary

0 displacement ul, the convergence of both methods is measured by

the norm of the residual load vector after a certain number of

iterations. Iterative calculations stop when the norm of the

residual force is less than some given convergence parameter TOL.

Generally TOL is about equal to 10 -7 Such a value was

sufficiently small to maintain a uniform stress and strain state

within the sample of the wedge test, and to obtain the bifurcation

point. In some circumstances, larger values of TOL were found to

lead to heterogeneous solutions. The error in the computed

solution has no important effect far away from the bifurcation

point. However as the applied displacement u1 gets larger, the

* error becomes larger and larger, and the stress and strain fields

* become more and more heterogeneous. In the vicinity of the

bifurcation point the error is treated as an artificial

geometrical imperfection within the finite element mesh. This

artificial imperfection is amplified and causes heterogeneous

* stress and strain solution. This geometrical imperfection, which

comes from approximate computation, causes the same effect as the

introduction of an eccentricity in the problem of the buckling of

an Euler beam. A difficulty in convergence of the solution is also

28
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observed when the applied displacement on the left boundary is too

large. In the case of updated Lagrangian techniques which update

nodes position, this divergence may cause the annihilation of a

few elements (negative volume), which precedes generally a fatal

computational crash.

3.5 CHANGE OF EIGENVALUES VERSUS APPLIED DISPLACEMENT.

In order to detect the bifurcation point, the minimum

eigenvalue of the stiffness matrix is calculated at each step of

prescribed displacement uI. The minimum eigenvalue is plotted in

Figs.5 and 6. versus uI  for three different meshes and for

*isotropic and anisotropic materials. As shown in Figs. 5 and 6,

the minimum eigenvalue decreases monotonously and becomes zero for

some value of the applied displacement u1 . The intersection of

i with the u axis corresponds to the bifurcation point, wheree . min U1

the stiffness matrix becomes singular. As shown in Figs.5 and 6,

the mesh refinement has a very important influence on the

detection of the bifurcation point. The analytical value of the

bifurcation indicated in Table 3 is overestimated when the block

is not enough discretized. However 25 elements are sufficient to

obtain an approximate value of the buckling stress of the

- half-space made of hypo-elastic material.

In the case of the elastoplastic model of Horii and

0 Nemat-Nasser, 1982, the minimum eigenvalue of Fig.7 remains

positive even for a 25 elements model. As shown in Fig.7, first,

A starts decreasing, increases when u is about 0.1, and then"." min

decreases again for larger value of uI. Since Amin does not become

negative, no surface instability can be detected for this
elastoplastic material during the wedge test. This disagreement of

analytical and numerical solutions in the case of elastoplastic

material will be analyzed in a later section.
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3.6 EIGENVALUES AND EIGENVECTORS AT THE BIFURCATION POINT.

Once the bifurcation point has been detected between times t

and tn+l, iterations may be performed to define more accurately

the bifurcation time. However these iterations were not necessary

in our analysis since the prescribed displacement increment was as

low as 0.0025. The calculations were stopped at time tn+1 when the

tangential stiffness matrix was found to have a negative

eigenvalue. The eigenvalues and eigenvectors of the stiffness

matrix were calculated at the onset of bifurcation time t . Tables

4 and 5 display all the eigenvalues in the case of 4 elements of

* isotropic hypo-elastic material and 25 elements of anisotropic

hypo-elastic material. The eigenvalues, which are sorted according

to their values, are listed in the tables 4 and 5. The

corresponding eigenvectors, which are identified by the mode

number of the eigenvalue, are plotted in Figs. 8 and 9. The

eigenvectors are plotted with respect to the deformed mesh, which

describes the position of the body at the onset of bifurcation.

% '.This representation of eiqenmodes is similar to the one used for

displaying the natural modes of vibration of structural systems.

Figs.8 and 9 show the direction and amplitude of the increment of

nodal displacement which are an alternate solution to the constant

deformation gradient solution. As shown in Fig.8a to 8d for a 4

elements model, the modes associated with the lowest eigenvalues

are surface modes for which the amplitude decays with depth. The

mode of Fig.8e, which corresponds to a larger eigenvalue, is a

volume mode. Its amplitude does not decay within the material. In

* addition to the eigenmodes of the coarse mesh of Figs.8, the

eigenmodes of a finer 25 elements mesh are examined in Figs.9. The

first two modes of Figs 9a and 9b are symmetric w.r.t to a the

central vertical axis. The amplitude of the surface wave decays
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away from each corner in the x1 and x2 directions, which was not

observed in the case of the half-space. Following these two first

modes, four surface modes similar to the ones found by Biot, 1965,

are shown in Figs 9c to 9f. The surface wave has the shortest wave

length in Fig.9c. This minimum wave length, which is associated

with the lowest eigenvalue, is directly related to the number of

nodes on the free surface. Following the surface modes, four

unexpected modes, which are not mentioned in any analytical work,

are shown in Figs. 9g to 9i. These unexpected modes are associated

with edges and not with the top free surface. As shown in Figs 9g

*-i. to 9i each edge of the block has a similar mode. In order to

designate this new type of mode, a new term has been coined - edge

* mode. Following these edge modes, the volume modes are shown in

Figs 9j to 9p. The volume modes correspond to wavy amplitude

within the volume of the block, which does not decrease within the

material volume. Biot (1965) calls these volume modes internal

buckling modes. The correspondence between the eigenvalues of

Table 5 and the types of mode is summarized on the real axis of

Fig.10, which has been blown up between 0 and 1. As shown in Table

5 and Fig.10, all the eigenvalues are real. The minimum and

maximum values are 0.01397 and 14.28, respectively. In a

bifurcation analysis, all these modes are not meaningful and only

the modes with the eigenvalues close to zero, are important.

However, as it is shown in Fig.6, there may be several modes with

* closely spaced eigenvalues, which may define several possible

- bifurcated branches for the discretized material. This multiple

- bifurcation is expected in the case of surface buckling. Biot,

-. 1965, found that there is an infinite number of surface waves

which contribute to the surface buckling.

In the case of the anisotropic hypo-elastic material, the six

first surface modes may contribute to the instability. According

to the presence and the relative rank of surface modes with
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respect to other types of modes, it may be concluded that

isotropic and anisotropic hypo-elastic materials are prone to

surface instability during the wedge test. However, a similar

* conclusion cannot be reached in the case of the particular

- elastoplastic model which was selected in the previous section.

Table 4. Eigenvalues of the stiffness matrix at the onset

of surface instability for a 4 elements models

of isotropic hypo-elastic material.

* Mode No Eigenvalues Figure No Mode No Eigenvalues Figure No

1 -0.07849 8a 6 3.315
2 0.2902 8b 7 6.838
3 0.05912 8c 8 9.320
4 0.8506 8d 9 18.99 8e
5 1.320
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Table 5. Eiqenvalues of the stiffness matrix at the onset

of surface instability for a 25 elements models

of anisotropic hypo-elastic material.

Mode No Eigenvalues Type Mode No Eigenvalues

1 0.01397 surface 28 2.748
2 0.03961 29 2.795
3 0.07393 30 2.880
4 0.1136 31 3.078
5 0.1469 32 3.617
6 0.4620 edge 33 3.872
7 0.4941 34 4.076
8 0.6301 35 4.399
9 0.6417 36 4.471
10 0.8335 volume 37 4.880
11 1.031 38 5.183
12 1.077 39 5.454
13 1.131 40 5.525
14 1.229 41 5.684
15 1.246 42 5.920
16 1.330 43 6.998
'- 7 1.561 44 7.212
18 1.620 45 7.351
19 1.654 46 7.582
20 2.017 47 8.503
21 2.073 48 9.119
22 2.094 49 9.455
23 2.138 50 9.625
24 2.230 51 10.40
25 2.348 52 11.00
26 2.472 53 12.31

r27 2.648 54 14.28

05



SECTION 4

INFLUENCE OF MATERIAL MODELLING ON SURFACE INSTABILITY

The present section describes the influence of the modelling

of material behavior on the surface instability of the wedge test.

The following constitutive equations have been used to simulate

the material behavior:

1. fully isotropic hypo-elastic materials, with two material

constants

2. transversely isotropic hypo-elastic material, with three

0 material constants

3. isotropic elastoplastic model derived from the flow theory

of plasticity with five material constants

The parametric study, which consisted of estimating the

influence of various models and their respective material

constants on the buckling load of the wedge test, has been carried

out by using the computer program BIF. Before presenting the

principles of the program BIF, the analysis of plane strain

surface instability is summarized in the form introduced by Horii

and Nemat-Nasser (1982). Mathematical derivations can be found in

the paper by Horii and Nemat-Nasser (1982).

4.1 PLANE-STRAIN SURFACE INSTABILITY OF HALF-SPACE.

L; In order to abbreviate the mathematical notations, it is

convenient to define the following coefficients:

d C1 lll - 1 (16a)L d C -r(16b)2 2222 2

* 1



."

d = C12 1 2 - r-r2)/2 (16c)

= C1 2 12 - (rI+r 2 )/2 (16d)

d 5 = C12 1 2 + (r1-r2)/2 (16e)

d 6 = C1 2 1 2 + (r 1 +r2 )/2 (16f)

d7 = C1122  (16g)

d8 = C2211 (16h)

I and 2 are the components of the Kirchhoff stress. C ijkl are

the coefficients of the rate type constitutive equations. By using

the coefficients di's, the equilibrium equations of incremental

stress in plane strain condition are:

SdlV + dV + (d +d)v =0 (17a)
1 1,11 3 1,22 4 72,12

d5V2 ,11 + d 2v 2 22 + (d4+d8)v1 ,12 0 (17b)

vI  and v2 are the velocity components. The subscript ","

represents spatial derivative:
2

i k i,j,k=l,2 (17c)Vk,ij = axiax

The geometry of the half-space under compressive stress is shown
in Fig.lI. It is supposed to be infinite in the vertical

direction. Note that the coordinates axis xl-x 2 have been replaced
* by x-y axis. On the edges x= ±a, a uniform stress is prescribed

in the x direction without shear traction. A uniform and constant

stress 2 is applied on the top surface (y=0). The notion of

surface instability means that the deformation is confined close

. to the top surface, i.e., the velocity field is fading

exponentially with x, vanishing at infinite distance from the top

surface. Horii and Nemat-Nasser (1982) assumed that the inception

of instable deformation is defined by the following velocity

60

N %J

f J ~ ct'*~" "C .- C.

,',. -



.' .*

field:

iax -CZy-Av e . e (18a)

ix -CtZy
v 2 =B e .e (18b)

of is real and positive. When the complex variable Z has a real

part strictly positive, the velocity (v11v2) varies as cosine or

sine in the x-direction and its amplitude decays exponentially

with the depth y. When Z is purely imaginary, the velocity (v1 ,v2 )

varies as cosine and sine in the x and y directions but its

- amplitude does not decay with depth. The former case corresponds

to surface instability, while the latter case corresponds to

volume instability.

x=-a x=a

II=

22

-" x1=x

-. . X =

Figure 11. Half-space under compressive stress.

Since the velocity field must decay with depth for surface

instability, the velocity field becomes:

[Ii.
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v (A eZ ly A e )e (19a)

v2 (- I2 e - 2 A4 e 2)e (19b)

The coefficients Z1, Z2  K1, and K2 are found by substituting (19)

into (17). Z 1  and Z2are the complex or real solutions with

positive real part of the following equation:

aZ4 + bZ2 + c =0 (19c)

The coefficients of the quadratic equation (19c) are:

a d 2d 3(19d)

b. d d d d + (dd+d' (19e)3 5 1 2 d4-s-7) '48'
c -d 1d 5(19f)

The coefficients K 1and K 2are:

-d + z2d -d +z 2d1 3 1 2 3
K, K 2 (19g)

iZ1 (d +d) iZ2 (d +d)

The imposition of the boundary conditions of Fig.ll leads to two

*linear equations with two unknowns A2 and A4:

(id - d K 2 A+(i 2Z )A4 = 0 (20a)8 2 1 Z1 ) 2 +i 8  2dK 2
(-d 3Z1I + i ) + -d32~ i 2d4) 4 = (20b)

In order to obtain a nontrivial solution, the determinant of this

system must vanish. If ~2is fixed and if the coefficients d. are
2 1

assumed to be function of r1 only, then the determinant of (20) is
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a function of r1:

f(r) = idZ -Z2)(d cd d -d d -Z Z d (d4d d (21a)1 3 1 2 5 8 7 2 1 1 2 2 4 3 5 2a

The buckling stress of the half-space can be obtained by solving

the following nonlinear equation of the variable

f(,l) = 0 (21b)

In the case of hypo-elastic material, all coefficients di are

functions of r1 " However, this dependence does not hold for

elastoplastic models due to the influence of 3 Horii and

• Nemat-Nasser (1982) solved this problem by assuming that there is

no plastic flow in x3 direction.

4.2 COMPUTATION OF BUCKLING LOAD WITH THE PROGRAM BIF.

Based upon the analytical development of Horii and

Nemat-Nasser (1982), the program BIF calculates the buckling

stress of the half space and plots the corresponding buckling

eigenmode. BIF does not discretize the half space in finite

elements but solves by iteration the nonlinear buckling equation

A> of the infinite half space for various material models. That is to

say that BIF provides analytical results which can be compared to

9. our finite element results. In order to solve the nonlinear

equation (21) the computer program increases the applied stress

in a segment [rmin' rmax ] which is specified by the user. Starting
from r and moving by increment Ar = (r -,min)/n where n is a

min max min
specified integer, it detects the stress level for which the real

or imaginary part of the equation (21) changes sign, then iterates

by using Regula-Falsi method until the equation (21) is satisfied.

After the calculation of the buckling stress, the buckling
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eigenmode can be plotted in a way similar to finite element

post-processing.

The following sections summarize for each model the influence

of the material constants on surface instability.

4.3 SURFACE INSTABILITY OF ISOTROPIC HYPO-ELASTIC MODEL.

Isotropic hypo-elastic material have two material constants:

G shear modulus

Poisson's ratio

If the stress on the free surface is zero 2=0, the coefficients

d to d8 are:

Sd I = 2G + A-r (22a)

d = 2G + A (22b)2
d3 = G - /2 = d4  (22c)

d5 = G + 1/2 = d6 (22d)

d7 = d8 =A (22e)

As shown in Fig.12, the buckling stress r which is

normalized by the shear modulus G, increases with Poisson's ratio

and depends on the stress applied on the surface of the

half-space. As it is to be expected, compressive stresses acting

on the half-space surface increase the buckling load while tensile

stresses decrease it. Note that the buckling stress is larger than

the shear modulus G, which is unrealistic for most Rock Mechanics

applications. The eigenmodes or buckling modes, which describe the

velocity field at the inception of surface instability, have been

calculated by using BIF. The mathematical expression of these

velocity fields can be found in Table.6. Three buckling modes of

the half-space are plotted in Figs.13a to 13c for three different

values of the wave length parameter a : r/2a, 3x/2a, and 5r/2a.

The eigenmodes are only plotted inside a square window of depth 2a
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which is centered on the y-axis. The dashed and full lines

represent the positions of a uniform grid before and after the

emergence of surface instability, respectively. As shown in

Figs.13, the velocity amplitude decays rapidly with the depth y.

The smaller the surface wave length is, the faster the velocity

amplitude decays with depth. Note that the eigenmodes of the

half-space shown in Figs.13 obey almost perfectly the boundary

conditions of the wedge test of Fig.2, although they are not

required to do so. The boundary conditions are slightly violated

at the lower boundary of Fig.13a: the first mode of the half-space

interferes more than the other modes with the boundary conditions

of a finite block. In the absence of an analytical solution for

0 the surface instability of block of finite size, this

incompatibility between eigenmode and boundary conditions may

S--explain some of the observations made during the finite element

analysis of the wedge test. It may explain why the surface modes

have distinct eigenvalues and why the lowest eigenvalues of the

stiffness matrix correspond to the smallest surface wave length.

4.4 SURFACE INSTABILITY OF ANISOTROPIC HYPO-ELASTIC MODEL.

Anisotropic hypo-elastic have three material constants:

G, G shear moduli in the plane of isotropy and in a planet
normal to the plane of Isotropy, respectively

* Poisson's ratio

As shown in Fig.14, the normalized buckling stress decreases

when the transverse shear modulus G decreases. The case G/Gt 1
t

corresponds to the isotropic case. When the ratio G/Gt becomes

0 very large, which corresponds to the case where the shear modulus

G in the isotropy plane is quite larger than the transverse shear

modulus Gt in a plane perpendicular to the half-space surface, the

buckling stress decreases to zero but remains always smaller than
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twice Gt . The buckling modes have been calculated in Table.6 and
t*

plotted in Figs.15 in the same way as the eigenmodes of the

isotropic case. The velocity amplitude of Figs.15a and 15b decays

faster with depth than in Figs.13, which results in a better

compatibility between the buckling modes of the half space and the

boundary conditions of the block of finite size of Fig.2. Note

that the modes of Fig.15c and Fig.13c are identical. However, the

eigenmodes of the half space of Fig.15 exhibit a larger amplitude

decay with depth than the finite element eigenmodes of Figs 9c to

9f. This slight difference between analytical and numerical modes

is certainly caused by the spatial discretization used in the

finite element model, and could be reduced by refining the finite

element mesh in the vicinity of the top surface.

4.5 SURFACE INSTABILITY FOR ELASTOPLASTIC MODEL.

The elastoplastic model used in the analysis is an isotropic

elastoplastic model derived from the flow theory of plasticity. It

has five material constants:

G elastic shear modulus

elastic Poisson's ratio

friction coefficient i.e. slope of yield surface in the

stress space (,r) where a and r the first and second

deviatoric stress invariants, respectively.

dilatancy parameter, i.e. slope of the plastic potential

surface in the stress space (cr).

H plastic modulus

Further detail on the elastoplastic models may be found in the

paper of Rudnicki & Rice (1975), or Nemat-Nasser & Horii(1982).

Nemat-Nasser and Horii (1982) applied the general elastoplastic

theory to describe some particular experimental data obtained on

sandstones. In this particular model, the plastic modulus H is a
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function of the first stress invariant a and the effective strain

-,. The friction coefficient is a constant, while the dilatancy

angle depends on the stress level (see Horii and Nemat-Nasser,

1982, for further detail).

As shown in Fig.16, the buckling stress calculated by using

elastic plastic model depends on the dilatancy angle P. For 0 =

0.39, which correspond to an associative flow rule since p=0. 39 ,

*the normalized buckling stress r /G increases with the normalized

plastic modulus H/G. In the same way as the eigenmodes of

.- hypo-elastic models, the buckling modes of elastoplastic models

have been calculated in Table.6 and plotted in Figs.17 and 18 for

two values of the normalized plastic modulus H/G: 0.1 and 0.01.

When H/G=0.1, the velocity amplitude of Figs.17a decays with depth

but certainly not as quickly as in Figs.13 or 15. The eigenmodes

of Figs.17 are not compatible with the boundary conditions of a

block of finite size. When H/G=0.01, which corresponds to more

plastic yielding than H/G=0.1, the eigenmodes of Figs.18 are found

to exhibit a very slow decay of amplitude with depth. This slow

decay with depth comes from the small real part of the root Z1 . In

the case H/G=0.01 the eigenmodes of the half-space are even more

incompatible with the boundary conditions of the wedge test. The

wave length parameter a must be very large to compensate for the

low part of the roots Z and Z However, in contrast to

analytical solutions, finite elements are unable to increase the

wave length parameter a in order to compensate for the slow

amplitude decay resulting from the small real parts of Z and Z

since the minimum wave length of the discrete system is controlled

by the number of nodes on the surface as it was pointed out in

Fig.9c. The combired presence of a small amplitude decay and a

limited wave length parameter a explains why the surface

instability of a block of finite size is difficult to obtain in

presence of large plastic yielding within a discretized system.
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The influence of non-associative flow rule has also been

investigated in Figs.19, by setting the dilatancy parameter 0

equal to zero. In this case, surface instability is found to be

only possible when the normalized plastic modulus H/G is larger

than about 0.055. For value smaller than 0.055 the roots Z and Z2

of equation (20) are pure imaginary, which implies that the

amplitude of the velocity field does not decay with depth. The

eigenmodes corresponding to H/G=0.05 are plotted in Figs.19. These

eigenmodes, which show no sign of amplitude decay with depth, are

incompatible with the boundary condition of the wedge test and of

the half-space. From the results of Fig.16, it may be concluded

that surface instability will be only possible when stresses reach

*a value in the order of the elastic shear modulus, which is

unlikely to take place due to plastic yielding. This resistance to

surface buckling which was encountered during the finite element

analysis of elastoplastic material subjected to the wedge test was

therefore to be expected. These observations are in agreement with

.the results of Hutchinson and Tvergaard (1980) but in disagreement

.-. with the results of Horii and Nemat-Nasser(1982). The origins of

"" such a disagreement need to be investigated in more detail in

future research.
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Table 6. Velocity field at the inception of surface instability

- ( e- 1zl + C 1e-a 2 ).e a

- (C 2e- c2Z y + C 3e-a 2 ).e a

No. al G z1 2  C1 C 2  C 3

1 -1.44832 (1.,0.) (0.476,0.) (-0.580,0.) (0.,l.) (0.,-1.724)

2 -0.19823 (3.80,0.) (0.018,0.) (-0.0326,0.) (0.,0.128) (0.,-3.926)

*3 -0.47157 (0.29,1.27)(0.29,-1.27) (-0.071,0.997) (1.658,0.118) (0.,-1.662)

4 -0.07942 (0.05,1.49)(0,05,-1.49) (-0.007,0.999) (1.555,0.011) (0.,-1.555)

5 -0.30146 (0.,1.1146)(0.,1.11598) (-0.996,0.) (1.0347,0.) (-1.030,0.)

where

No.1 - Isotropic hypo-elastic (Figs.13a to 13c)

C - 1, Gt - 1, v. -0.3

No.2 - Anisotropic hypo-elastic (Figs.l5a to 15c)

G - 1, Gt - 0.1, v. -0.3

No.3 - Elastoplastic model (Figs.17a to 17c)

C - 1, v -0.3, M- -0.39, H - 0.1

*No.4 - Elastoplastic model (Figs.18a to 18c)

C - 1, v. -0.3, IA- 0.39, H - 0.01

*No.5 - Elastoplastic, model (Figs.19a to 19c)

G 1 -0.3, ~ 0.39, 8 0., H- 0.05
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SECTION 5

INFLUENCE OF NONUNIFORM STRESS FIELD ON SURFACE INSTABILITY

V The fourth task of the project was to examine the effect of

nonuniform stress distribution on the value of the buckling load.

This influence has been investigated by restraining the vertical

displacement of the nodes located on the left boundary of Fig.2.

The nodal displacement are prescribed in both horizontal and

vertical direction. This prescribed displacement boundary

condition corresponds to the case of no slippage between the
material and the left loading plate. Besides the vertical

displacement conditions on the left boundary, the geometry and

boundary conditions of the model are similar to the ones shown in

Fig.2. The deformed mesh at the onset of surface instability is

shown in Fig.20. As shown in Fig.21, the stress-displacement

response is almost identical to the frictionless case; however the

introduction of friction tends to make the material response

.- slightly stiffer than in the absence of friction. Figs.22a, b, and

c represent the contour of the various components of stress aill

a and a12 which characterize the degree of nonuniformity of the

stress field. The horizontal stress a11 varies between -0.270 and

-0.241, the stress a between -0.058 and +0.0036, and the shear

* stress 012 between -0.00182 and 0.00629. All stresses can be

considered dimensionless since the shear modulus G has been

selected equal to 1. The detection of the bifurcation can be

performed in the same way as in the absence of friction. The

variation of the minimum eigenvalues of the stiffness matrix

versus the applied displacement u1 is shown in Fig.23. This figure

also indicates that the minimum eigenvalue of the tangential

ON, stiffness matrix with friction is always larger that the one
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without friction. Therefore introducing friction on the boundary

increases the buckling load. The eigenvectors associated with the

eigenvalues of Table 7 are shown in Figs.24a to 24i. The

eigenmodes are similar to the ones obtained in the absence of

friction, with the difference that the amplitude on the left

boundary are zero. The mode associated with the lowest eigenvalue

is quite similar to the second mode which was obtained for the

frictionless conditions of Figs.9. The similitude pertains for the

surface modes of Figs. 24b to 24e and for the edge modes of Figs.

24f to 24h. Two edge modes of Figs.9 are missing due to the

kinematic constraints imposed at the left boundary of Fig.2. The

buckling load increases as friction is introduced since the

kinematic constraints prevent the buckling modes from being

* activated.
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Table 7. Eigenvalues of the stiffness matrix at the onset

of surface instability for a 25 elements model

of anisotropic hypo-elastic material in presence

of friction.

Mode No Eigenvalue Type Mode No Eigenvalue

1 0.01455 surface 26 3.008
2 0.04254 27 3.390
3 0.08934 28 3.878
4 0.1359 29 3.958
5 0.2274 30 4.415
6 0.4679 edge 31 4.815
7 0.6216 32 4.872
8 0.6433 volume 33 4.872
9 0.7814 34 5.203
10 1.030 35 5.465
11 1.039 36 5.715
12 1.171 37 5.746
13 1.268 38 6.923
14 1.305 39 7.100
15 1.574 40 7.153
16 1.584 41 7.546
17 1.672 42 8.392
18 1.959 43 9.170
19 2.013 44 9.239
20 2.088 45 9.760
21 2.168 46 10.54
22 2.449 47 10.84
23 2.682 48 12.49
24 2.768 49 14.19
25 2.798
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SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS.

A general numerical approach has been developed to assess the

phenomenon of rockbursting, based upon the assumption that

rockbursting is a surface instability of bulky material masses.
.1 The general approach has been calibrated in the case of a simple

O boundary value problem: the wedge test.

The analysis has been carried out in four steps:

1. Using nonlinear finite element methods similar to the ones

employed in structural dynamics, finite element computer

program modules have been developed for analyzing surface

instability of material masses.

2. The modules have been used to analyze a simple boundary value

problem: the wedge test. The numerical solutions have been

compared with analytical solutions in the case of isotropic and

anisotropic hypo-elastic materials.

3. Three constitutive equations formulated in terms of large

deformation have been used to describe the material behavior:

isotropic and anisotropic hypo-elastic, and elastoplastic

models. The influence of their respective material constants on

the surface instability during the wedge test has been

evaluated.

4. The influence of the friction on surface instability has also

been estimated in the case of the wedge test.

Surface instability has been treated as a bifurcation

phenomenon, which emerges from the loss of uniqueness of the
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partial differential equation of incremental stress equilibrium.

* In the context of finite elements, the bifurcation point is

- detected when the tangential stiffness matrix becomes singular.

* Accurate finite element methods have been required in order to

detect the bifurcation and to avoid numerical divergence. In the

* vicinity of a bifurcation point, finite element methods have been

found to consider the computational errors, which are inherent due

- to any iterative techniques, as a geometrical imperfection of the

finite element mesh. In some circumstances, these artificialN

imperfections were found to grow rapidly and to transform the

* uniform stress-strain state into highly heterogeneous stress and

strain field leading to numerical divergence. These artificial

geometrical imperfections have the same effect as the eccentricity

- in the buckling problem of Euler beams. From another point of

* view, these artificial imperfections render difficult the approach

of bifurcation point by transporting the numerical solution on a

bifurcated branch of solution far away from the analytical

bifurcation point.

Isotropic and anisotropic hypo-elastic models were found to be

* simple to use in estimating the buckling load and eigenmode of the

wedge test. For such hypo-elastic materials, numerical and

analytical solutions were in excellent agreement, which

* demonstrated that our numerical methods and implementation were

- appropriate to describe surface instability. The elastoplastic

models of the flow theory of plasticity which are used in this

analysis are found to be resistant to surface instability during -

the finite element analysis of the wedge test. A more detailed

analytical investigation corroborated these finite element

4 observations. This analysis revealed that a slice of the half

*space made of the same elastoplastic models is prone to volume

*instability for low stress level and to surface instability for

high stress level. In other words, this analysis pointed out that

107



surface instability may be impossible for some combinations of

-'". material parameters or loading conditions since plastic yielding

prevents stress from reaching values of the same order as elastic

shear modulus. These observations on the influence of material

modeling on surface instability are in agreement with Hutchinson

and Tvergaard conclusions (1980) but in disagreement with

- Nemat-Nasser and Horii results (1982)

.,. . . . . . . . .. .

.. . . . . . . . . . . . . . . . . . . . ,
. .. . . . . . . . . ..- * -: * .'l* *.- *'i
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6.2 RECOMMENDATIONS.

In order to clarify the problems encountered in the wedge test

of elastoplastic model, it is recommended to extend the methods

used in the program BIF from the half-space to block of finite

length. This extension will provide a valuable approach for the

investigation of surface instability in the case of block of

finite size made of elastoplastic material.

The numerical methods which have been developed in this work

have only been applied to the simple boundary value problem of the

wedge test. According to the good agreement between numerical and

*
4  

analytical results in the case of the wecdge test, it is

recommended to extend the method to the more complex boundary

problems encountered in real excavations. A direct application of

this generalization is to estimate the risk of rockbursting of

real excavations.

The present work analyzed only the emergence of surface

instability but did not examine how the phenomenon evolve

afterwards. In order to extend the solution in the

post-bifurcation range, it is recommended to use the computational

techniques of structural mechanics known as continuation

techniques or imperfection approach.

Finally it is suggested to perform careful experiments on

material prone to surface instability and to develop constitutive

models which are more realistic than the ones used in this work.

Extreme care must be exercised in the development of such material

models. The anisotropic hypo-elastic model used in this analysis

has clearly indicated that surface instability may be dependent on0.
material behavior which are not apparent in the stress-strain

response prior to the buckling phenomenon. It is recommended to

develop models based upon vertex plasticity or the deformation

theory of plasticity.
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APPENDIX A

BIOT'S APPROACH TO SURFACE INSTABILITY

The following section presents Biot's approach to investigate

the problem of the surface instability of an elastic half-space

subjected to finite deformation. It is a simple illustration for

the understanding of the phenomenon of surface instability from

the point of view of continuum mechanics. The problem was

initially formulated by Biot in his book "Mechanics of incremental

deformation," John Wiley & Sons, Inc. 1965, page 159. This pioneer

* work defines the problem of surface instability in a very simple

but rigorous way.

Biot describes the material behavior with incompressible

finite deformation elasticity:

a = G - p.6 (la)

is Cauchy stress, 0 the only material constant, p the mean

pressure, 6 is Kroneker's symbol with components 6ij

6i. = 1, if i=j; and 6 = 0, if i'j (lb)

G is related to the deformation gradient F:

ax iF.FT F.. = -- (2)

where x and X are the initial and present positions of a particle,

respectively. The constitutive equation (1) can be written in

incremental form:
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a 0 (D. G+G. D) P. p6 or a.j C = jk D D (3)

* D is the rate of deformation:

D ( i + a )/2 (4)

where u is the velocity at location z

* * A0

* . aJauman's rate and, a material time derivative of Cauchy stress

aare related (see page 32 of Biot's book, 1965)

0

ar = a.W +W.a (5a)

0

a. * a.. + a ikW j + aj W ik(5b)

W is the spin tensor

/i au. au.)2 6

ax. ax.

*The incremental constitutive matrix in the relation (3) is

C. =A 6 +(s. 6 + s 6 + + / (7)ijkl ij'kl ik lj il jk ~j16ik + jk'i1l)

* s. . is the deviator stress

s - k/ 3Sij (8)
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A is an arbitrary large number, which accounts for

incompressibility.

The problem formulated by Biot is shown in Fig.25.

a22 0
x =x

- 11

(A=)

A2

Figure 25. Half-space under compressive stress.

The trivial solution of the problem of Fig.25 is a uniform

displacement field, with homogeneous strain. According to the

- material incompressibility and plane strain condition, the

stretches in the 1, 2 and 3 directions, A1 , )A2 and x3 are such

as:

-' 2 =1 A = 1 (9)
1 2 3

Using the constitutive equation (1), the stresses are

7.4 11,

O.

LA x 
p  

-
p  ( 0)

•~ 1"

.. 22 AA 0 2  - p = 0( 1

-:%5%



V ;V V -. -

33 " P(2

Bysbtatng(0 rm(1) h pledsrs, s

P 22(3

a-2p Dl- (12)

C 2 4 2 216

Singe the incrmnal cstiincmpessrbeto (3) the0 increment of

~~~ll~1 22 p 1 1 (4

adding (14) and (15):

a (a or a2 )/2 (17)

The modulus is

=e (A1
2 + x2 2 )/2 (18)

* Biot derives the equilibrium conditions for the incremental stress

field:

3a aa2 aW12
B1 2 + 1 -P =0 (19)

ax By ax
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The constraint of incompressibility is satisfied by introducing a

stream function p(x,y):

ay ax

After some calculations, Biot found equations (19) and (20)
become :

2 a2 a2 a2a2  a 2 2

+ -P) ((-p/2) -- + (wa+P/ 2 ) -- ) = 0 (22)

The usual solution of (22) is the uniform displacement field with

homogeneous deformation. However there is a solution which is

sinusoidal along the x direction and vanishes at infinite depth

* (Y=-)
-1(C ely + C ekly)sin lx (23)

1

C1 and C2 are two constants, 1 is inversely proportional to

length, and k is

k = A 1/X2  (24)

By enforcing the fact that the surface y=O is free of stress, Biot

finds that the solution (23) exists when:

+ 2 - 2 = 0 with = 2 )/(l+k 2 ) (25)

which has one real solution = 0.839 (k=0.295). The extension

ratio corresponding to surface instability for this case is

= 0.544 (26)
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and the applied compressive stress is

P 3.08 0 (27)
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APPENDIX B

ANALYTICAL SOLUTION OF THE RESPONSE OF AN HYPO-ELASTIC SOLID

SUBJECTED TO FINITE PLANE STRAIN COMPRESSION

.-

Consider the plane strain problem of Fig.26.

x

00

0 1

Fig.26. Block of finite size subjected to the wedge test.

The constraints imposed by the plane strain loading on the rate of

deformation are:

D 3 D = D 2  D = 0 (la)D 33 12 23 = 31
S

.. = 0 i,j=1,2,3 (lb)

The constitutive equation is expressed in term of the Jauman rate

of Cauchy stress:

a = C.D - c trace(D) (ic)

Jp.
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where ais Cauchy stress, and C the constitutive matrix of

transversely anisotropic elasticity, the plane of isotropy being

nra to te x direction. Acrigto (1b) Jauman's rate isI

identical to the material time derivative

00 (ld)

The general constitutive (1a) becomes:

o 2G
al =((l-v)D +D (D+D(a
112 11 22 - 11 D11+D22)()

0 2G
022 =(vD 1  + (1-v) D2  a a2 (D1 1 +D2  (2b)

1-21/

0 2G

033 -w(v(D 11 +D22)) -o 3 3 (D 1 1 +D 2 2 ) (2c)

C1 Gt D =0 (2d)
12 t 12

If the stress on the free surface x2 =0 remains equal to zero:

0

02 0 and 02 0 (3a)

*then the relation (2b) reduces to:

D22 =- 1 1  (

and the relation (2a) becomes
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2G - 1 ( 2 )1v(4)

The relation (4) can be integrated with respect to time t assuming

that a 11=0and D 11=Oat timet =0

1v a

t 1-V C1ID11dt 2G- L-' 1-(1-2L) (5a)

0 J1 -2v 2G

But the integral of is related to the displacement in the

x -direction u which is zero at time t=O

- 1.

J dt = L -
1 )) (5b)

The material response is:

2G 1-V
- - - (C+u1) ] (5c)

a33 a a 11 (5d)

Su 1 + (l+u1 )
- v/(l - v) (5e)

Note that the material response is independent of the modulus Gt

since there is no shear. The finite strain solution (5) is equal

to the srall strain solution if u1 is small compared to 1

2 = -vu/(1-v) (5f)
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- .- - - ~ ~ *~W ~ w T V~- .VW V V 1. -L: -C- -L W- W-

=2Gu,,/ (l-v) (5g)

The response given by equation (5) is plotted in Figs.3 and 27 for

the following values of the shear modulus and Poisson's ratio:

G=l, v=0.3
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